学术预告 首页  >  学术科研  >  学术预告  >  正文

学术报告-Convergence of stochastic methods for describing quantum dissipative dynamics and non-Markovian quantum master equations
作者:     供图:     供图:     日期:2020-11-16     来源:    

讲座主题:Convergence of stochastic methods for describing quantum dissipative dynamics and non-Markovian quantum master equations

主讲人: 严运安

工作单位:鲁东大学物理与光电工程学院

活动时间:2020年11月19日 10:00-11:00

讲座地点:光电学院1511报告厅

主办单位:bob体育在线app光电信息科学技术学院

内容摘要:

The quantum dissipative dynamics is often described by system-plus-environment model and the effect of the environment on the evolution of the system can be characterized by noises. With such a paradigm, the stochastic approach becomes not only a powerful numerical method but also a useful tool to develop more efficient deterministic approaches for describing quantum dissipative dynamics. Various stochastic methods are available in the literature, such as the stochastic Liouville equation and the stochastic Schrödinger equation. Also, different deterministic equations, to be specific, the hierarchical approach and the formulas of differentiation, can be obtained from the same stochastic Liouville equation. Here we present our progress demonstrating the convergence of the stochastic methods. First, we have proven the equivalence between the stochastic Liouville equation based on the stochastic decoupling of the system-bath interaction and the non-Markovian quantum state diffusion approach. Second, we have shown the unification between the formula of differentiation and the hierarchy approach. The equivalence of different stochastic approaches and the unification of different deterministic methods derived from the same stochastic equation show the convergence of the stochastic equations for describing quantum dissipative dynamics. These results may stimulate more efficient, versatile methods to study quantum dissipative systems.

主讲人介绍:

严运安教授2002年于中国科学院理论物理研究所获得博士学位。2002-2012年,他先后在中科院化学研究所、美国德克萨斯理工大学、德国柏林自由大学、德国罗斯托克大学和日本九州大学进行博士后和访问学者研究。他于2012年加入贵州师范学院,2018年加入鲁东大学,现任鲁东大学教授。他目前的研究方向是发展新方法模拟凝聚相中分子体系的耗散动力学。

Baidu
map